Evaluation of Ceftriaxone Plus Avibactam in an Intracellular Hollow Fiber Model of Tuberculosis: Implications for the Treatment of Disseminated and Meningeal Tuberculosis in Children.
Shashikant Srivastava M.D.
Srivastava, S., van Zyl, J., Cirrincione, K., Martin, K., Thomas, T., Deshpande, D., Alffenaar, J.W., Seddon, J.A. and Gumbo, T. (2020). “Evaluation of Ceftriaxone Plus Avibactam in an Intracellular Hollow Fiber Model of Tuberculosis: Implications for the Treatment of Disseminated and Meningeal Tuberculosis in Children.” Pediatr Infect Dis J 39(12): 1092-1100.
BACKGROUND: Ceftazidime-avibactam is an effective agent for the treatment of tuberculosis (TB) but requires frequent administration because of a short half-life. Due to a longer half-life, ceftriaxone could allow intermittent dosing. METHODS: First, we identified the MIC of ceftriaxone with 15 mg/L avibactam in 30 clinical Mycobacterium tuberculosis isolates. Next, 2 ceftriaxone exposure-effect studies in the intracellular hollow fiber model of TB (HFS-TB) that mimics disseminated disease in young children, were performed. Ceftriaxone was administered once or twice daily for 28 days to explore percentage of time that the concentration persisted above MIC (%TMIC) ranging from 0 to 100%. In a third HFS-TB experiment, the “double cephalosporin” regimen of ceftazidime-ceftriaxone-avibactam was examined and analyzed using Bliss Independence. CONCLUSION: The MIC99 of the clinical strains was 32 mg/L, in the presence of 15 mg/L avibactam. Ceftriaxone %TMIC <42 had no microbial effect in the HFS-TB, %TMIC >54% demonstrated a 4.1 log10 colony-forming units per milliliter M. tuberculosis kill, while %TMIC mediating Emax was 68%. The “double cephalosporin” combination was highly synergistic. Monte Carlo experiments of 10,000 subjects identified the optimal ceftriaxone dose as 100 mg/kg twice a day. CONCLUSION: The combination of ceftriaxone-avibactam at 100 mg/kg could achieve Emax in >90% of children. The ceftriaxone potent activity M. tuberculosis could potentially shorten therapy in children with disseminated TB.