Potential Indications for Tissue Engineering in Temporomandibular Joint Surgery.
Larry M. Wolford, D.M.D.
Salash, J. R., R. H. Hossameldin, A. J. Almarza, J. C. Chou, J. P. McCain, L. G. Mercuri, L. M. Wolford and M. S. Detamore (2016). “Potential Indications for Tissue Engineering in Temporomandibular Joint Surgery.” J Oral Maxillofac Surg 74(4): 705-711.
PURPOSE: Musculoskeletal tissue engineering has advanced to the stage where it has the capability to engineer temporomandibular joint (TMJ) anatomic components. Unfortunately, there is a paucity of literature identifying specific indications for the use of TMJ tissue engineering solutions. The objective of this study was to establish an initial set of indications and contraindications for the use of engineered tissues for replacement of TMJ anatomic components. FINDINGS: There was consensus among the authors that the management of patients requiring TMJ reconstruction as the result of 1) irreparable condylar trauma, 2) developmental or acquired TMJ pathology in skeletally immature patients, 3) hyperplasia, and 4) documented metal hypersensitivities could be indications for bioengineered condyle and ramus TMJ components. There was consensus that Wilkes stage III internal derangement might be an indication for use of a bioengineered TMJ disc or possibly even a disc-like bioengineered “fossa liner.” However, there was some controversy as to whether TMJ arthritic disease (e.g., osteoarthritis) and reconstruction after failed alloplastic devices should be indications. Further research is required to determine whether tissue-engineered TMJ components could be a viable option for such cases. Contraindications for the use of bioengineered TMJ components could include patients with TMJ disorders and multiple failed surgeries, parafunctional oral habits, persistent TMJ infection, TMJ rheumatoid arthritis, and ankylosis unless the underlying pathology can be resolved. CONCLUSIONS: Biomedical engineers must appreciate the specific indications that might warrant TMJ bioengineered structures, so that they avoid developing technologies in search of problems that might not exist for patients and clinicians. Instead, they should focus on identifying and understanding the problems that need resolution and then tailor technologies to address those specific situations. The aforementioned indications and contraindications are designed to serve as a guide to the next generation of tissue engineers in their strategic development of technologies to address specific clinical issues.