Teodoro Bottiglieri Ph.D.

Posted January 15th 2021

Preferential accumulation of the active S-(+) isomer in murine retina highlights novel mechanisms of vigabatrin-associated retinal toxicity.

Teodoro Bottiglieri, Ph.D.

Teodoro Bottiglieri, Ph.D.

Walters, D.C., Jansen, E.E.W., Salomons, G.S., Arning, E., Ashcraft, P., Bottiglieri, T., Roullet, J.B. and Gibson, K.M. (2020). “Preferential accumulation of the active S-(+) isomer in murine retina highlights novel mechanisms of vigabatrin-associated retinal toxicity.” Epilepsy Res Dec 29;170:106536. [Epub ahead of print].

Full text of this article.

((S)-(+)/(R)-(-)) vigabatrin (Sabril(R); γ-vinyl GABA), an antiepileptic irreversibly inactivating GABA-transaminase, was administered to male C57Bl6 J mice via continuous infusion (0, 40, 80 mg/kg/d) for 12 days. Our study design pooled retina, eye (minus retina), whole brain and plasma from n = 24 animals for each dose to provide n = 8 triplicates per treatment group. Hypothesizing that (S)-(+) VGB (active isomer) would preferentially accumulate in retina, we determined VGB isomers, comprehensive amino acids, and pharmacokinetic parameters. In brain, eye and plasma, the ((S)-(+)/(R)-(-)) ratio varied from 0.73 to 1.29 and 13.3 in retina, accompanied by a partition coefficient (tissue/plasma, ((S)-(+);(R)-(-))) of 5.8;0.34, 0.63;0.49, and 0.51;0.34 in retina, eye and brain, respectively. Racemic VGB (nmol/g; plasma, nmol/mL, range of means for dose) content was: retina, 25-36; eye (minus retina), 4.8-8.0; brain, 3.1-6.8 and plasma, 8.7-14.9. GABA tissue content (nmol/g) was 1246-3335, 18-64 and 2615-3200 as a function of VGB dose for retina, eye (minus retina) and brain, respectively. The retinal glial cell toxin 2-aminoadipic acid also increased with VGB dose (76-96 nmol/g). Partitioning of active (S)-(+) VGB to retina suggests the involvement of a stereospecific transporter, the identification of which could reveal new therapeutic paradigms that might mitigate VGB’s well-known retinal toxicity and expand its clinical utility.


Posted January 15th 2021

[6S]-5-Methyltetrahydrofolic Acid and Folic Acid Pregnancy Diets Differentially Program Metabolic Phenotype and Hypothalamic Gene Expression of Wistar Rat Dams Post-Birth.

Teodoro Bottiglieri, Ph.D.

Teodoro Bottiglieri, Ph.D.

Pannia, E., Hammoud, R., Simonian, R., Arning, E., Ashcraft, P., Wasek, B., Bottiglieri, T., Pausova, Z., Kubant, R. and Anderson, G.H. (2020). “[6S]-5-Methyltetrahydrofolic Acid and Folic Acid Pregnancy Diets Differentially Program Metabolic Phenotype and Hypothalamic Gene Expression of Wistar Rat Dams Post-Birth.” Nutrients 13(1).

Full text of this article.

[6S]-5-methyltetrahydrofolic acid (MTHF) is a proposed replacement for folic acid (FA) in diets and prenatal supplements. This study compared the effects of these two forms on maternal metabolism and hypothalamic gene expression. Pregnant Wistar rats received an AIN-93G diet with recommended FA (1X, 2 mg/kg, control), 5X-FA or equimolar levels of MTHF. During lactation they received the control diet and then a high fat diet for 19-weeks post-weaning. Body weight, adiposity, food intake, energy expenditure, plasma hormones, folate, and 1-carbon metabolites were measured. RNA-sequencing of the hypothalamus was conducted at parturition. Weight-loss from weaning to 1-week post-weaning was less in dams fed either form of the 5X vs. 1X folate diets, but final weight-gain was higher in 5X-MTHF vs. 5X-FA dams. Both doses of the MTHF diets led to 8% higher food intake and associated with lower plasma leptin at parturition, but higher leptin at 19-weeks and insulin resistance at 1-week post-weaning. RNA-sequencing revealed 279 differentially expressed genes in the hypothalamus in 5X-MTHF vs. 5X-FA dams. These findings indicate that MTHF and FA differ in their programing effects on maternal phenotype, and a potential adverse role of either form when given at the higher doses.


Posted October 31st 2020

Novel biomarkers and age-related metabolite correlations in plasma and dried blood spots from patients with succinic semialdehyde dehydrogenase deficiency.

Teodoro Bottiglieri, Ph.D.

Teodoro Bottiglieri, Ph.D.

Kirby, T., Walters, D.C., Shi, X., Turgeon, C., Rinaldo, P., Arning, E., Ashcraft, P., Bottiglieri, T., DiBacco, M., Pearl, P.L., Roullet, J.B. and Gibson, K.M. (2020). “Novel biomarkers and age-related metabolite correlations in plasma and dried blood spots from patients with succinic semialdehyde dehydrogenase deficiency.” Orphanet J Rare Dis 15(1): 261.

Full text of this article.

BACKGROUND: Previous work has identified age-related negative correlations for γ-hydroxybutyric acid (GHB) and γ-aminobutyric acid (GABA) in plasma of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD). Using plasma and dried blood spots (DBS) collected in an ongoing natural history study, we tested the hypothesis that other biomarkers would follow a similar age-related negative correlation as seen for GHB/GABA. Samples (mixed sex) included: patients (n = 21 unique samples, 1-39.5 yrs) and parallel controls (n = 9 unique samples, 8.4-34.8 yrs). Archival control data (DBS only; n = 171, 0.5-39.9 yrs) was also included. RESULTS: Metabolites assessed included amino acids (plasma, DBS) and acylcarnitines, creatine, creatinine, and guanidinoacetate (DBS only). Age-related negative correlations for glycine (plasma, DBS) and sarcosine (N-methylglycine, plasma) were detected, accompanied by elevated proline and decreased levels of succinylacetone, argininosuccinate, formaminoglutamate, and creatinine. Significantly low acylcarnitines were detected in patients across all chain lengths (short-, medium- and long-chain). Significant age-dependent positive correlations for selected acylcarnitines (C6-, C12DC(dicarboxylic)-, C16-, C16:1-, C18:1-, C18:2OH-carnitines) were detected in patients and absent in controls. Receiver operating characteristic (ROC) curves for all binary comparisons revealed argininosuccinate and succinylacetone to be the most discriminating biomarkers (area > 0.92). CONCLUSIONS: Age-dependent acylcarnitine correlations may represent metabolic compensation responsive to age-related changes in GHB and GABA. Our study highlights novel biomarkers in SSADHD and expands the metabolic pathophysiology of this rare disorder of GABA metabolism


Posted June 24th 2020

Relationship of Cerebrospinal Fluid Vitamin B12 Status Markers With Parkinson’s Disease Progression.

Teodoro Bottiglieri, Ph.D.

Teodoro Bottiglieri, Ph.D.

Christine, C. W., P. Auinger, N. Saleh, M. Tian, T. Bottiglieri, E. Arning, N. K. Tran, P. M. Ueland and R. Green (2020). “Relationship of Cerebrospinal Fluid Vitamin B12 Status Markers With Parkinson’s Disease Progression.” Mov Disord May 14. [Epub ahead of print].

Full text of this article.

BACKGROUND: Using blood specimens from untreated early Parkinson’s disease (PD) patients from the DATATOP trial, we found that subjects in the low serum vitamin B12 tertile experienced greater annualized change in ambulatory capacity score, whereas those with moderately elevated (>15 μmol/L) total homocysteine had greater annualized declines in the Mini-Mental State Exam. METHODS: In this this study we sought to determine whether levels of cerebrospinal fluid (CSF) B12 markers were also associated with progression of PD. RESULTS: The annualized change in the UPDRS “walking” item, a component of the ambulatory capacity score, was worse in the low B12 tertile. No association with change in the Mini-Mental State Exam was seen for those 7% with the highest baseline CSF total homocysteine. CONCLUSIONS: In these untreated early-PD subjects, low CSF B12 predicted greater worsening of the UPDRS “walking” item, whereas CSF total homocysteine was not associated with progression of cognitive impairment. These findings extend and partially support our findings in serum.


Posted May 15th 2020

Impact of the MTHFR C677T polymorphism on one-carbon metabolites: Evidence from a randomised trial of riboflavin supplementation.

Teodoro Bottiglieri, Ph.D.

Teodoro Bottiglieri, Ph.D.

Rooney, M., T. Bottiglieri, B. Wasek-Patterson, A. McMahon, C. F. Hughes, A. McCann, G. Horigan, J. J. Strain, H. McNulty and M. Ward (2020). “Impact of the MTHFR C677T polymorphism on one-carbon metabolites: Evidence from a randomised trial of riboflavin supplementation.” Biochimie Apr 21. pii: S0300-9084(20)30074-2. [Epub ahead of print].

Full text of this article.

Homozygosity for the C677T polymorphism in MTHFR (TT genotype) is associated with a 24-87% increased risk of hypertension. Blood pressure (BP) lowering was previously reported in adults with the TT genotype, in response to supplementation with the MTHFR cofactor, riboflavin. Whether the BP phenotype associated with the polymorphism is related to perturbed one-carbon metabolism is unknown. This study investigated one-carbon metabolites and their responsiveness to riboflavin in adults with the TT genotype. Plasma samples from adults (n 115) screened for the MTHFR genotype, who previously participated in RCTs to lower BP, were analysed for methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), betaine, choline and cystathionine by liquid chromatography tandem mass spectrometry (LC-MS/MS). The one-carbon metabolite response to riboflavin (1.6 mg/d; n 24) or placebo (n 23) for 16 weeks in adults with the TT genotype was also investigated. Plasma SAM (74.7 +/- 21.0 vs 85.2 +/- 22.6 nmol/L, P = 0.013) and SAM:SAH ratio (1.66 +/- 0.55 vs 1.85 +/- 0.51, P = 0.043) were lower and plasma homocysteine was higher (P = 0.043) in TT, compared to CC individuals. In response to riboflavin, SAM (P = 0.008) and cystathionine (P = 0.045) concentrations increased, with no responses in other one-carbon metabolites observed. These findings confirm perturbed one-carbon metabolism in individuals with the MTHFR 677TT genotype, and for the first time demonstrate that SAM, and cystathionine, increase in response to riboflavin supplementation in this genotype group. The genotype-specific, one-carbon metabolite responses to riboflavin intervention observed could offer some insight into the role of this gene-nutrient interaction in blood pressure.